Minimum distance of linear codes and the $\alpha$-invariant

نویسندگان

  • Mehdi Garrousian
  • Stefan Tohaneanu
چکیده

The simple interpretation of the minimum distance of a linear code obtained by De Boer and Pellikaan, and later refined by the second author, is further developed through the study of various finitely generated graded modules. We use the methods of commutative/homological algebra to find connections between the minimum distance and the α-invariant of such modules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codes from surfaces with small Picard number

Extending work of M. Zarzar, we evaluate the potential of Goppa-type evaluation codes constructed from linear systems on projective algebraic surfaces with small Picard number. Putting this condition on the Picard number provides some control over the numbers of irreducible components of curves on the surface and hence over the minimum distance of the codes. We find that such surfaces do not au...

متن کامل

Computation of Minimum Hamming Weight for Linear Codes

In this paper, we consider the minimum Hamming weight for linear codes over special finite quasi-Frobenius rings. Furthermore, we obtain minimal free $R$-submodules of a finite quasi-Frobenius ring $R$  which contain a linear code and derive the relation between their minimum Hamming weights. Finally, we suggest an algorithm that computes this weight using the Grobner basis and we show that und...

متن کامل

Minimum distance of error correcting codes versus encoding complexity, symmetry, and pseudorandomness

We study the minimum distance of binary error correcting codes from the following perspectives: • The problem of deriving bounds on the minimum distance of a code given constraints on the computational complexity of its encoder. • The minimum distance of linear codes that are symmetric in the sense of being invariant under the action of a group on the bits of the codewords. • The derandomizatio...

متن کامل

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

Linear programming bounds for doubly-even self-dual codes

We give a new proof of the Mallows-Sloane bound on the minimum distance of doubly-even self-dual codes. The proof avoids using the Gleason theorem and invariant theory. It is based on a special choice of the polynomial in the conventional linear programming approach.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015